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The structure of the powerful neurotoxin brevetoxih241, 07(5/ o 0 TR A
Figure 1) still stands as a formidable synthetic challenge despite " TReducton] m [ singlet O; ) m
much synthetic activity> Synthetic strategies for the con- I 4,(0%)2 A
struction of several of its ring systems have been develéped, — ; R X R v
but clearly the most challenging region of the molecule must “ra0) W\ Kotone acetal N
be its EFGH framework. The latter system contains three of coupling phosphate v

the most difficult rings to construct, namely, a didehydroox- oxidation of the prlmary alcohol, furnishing aldehyd¢87%),
anonacane (E), a didehydrooxaoctacane (F), and an oxaoctacanehich was oxidized further to hydroxy aciél (96%) by the
(G). All previous attempts at the system fall short of an action of NaClIO,—NaHPQ in the presence of 2-methyl-2-
assembly of the complete EFGH framework. Herein, we report butene int-BuOH:H,O (5:1). Lactonization o8 following the
a solution to this problem, employing a new method for the Yamaguchi protoc8ithen gave lacton® (70%). Applying our
construction of didehydrononacane systems. The reportedpalladium-catalyzed methodolddpr the conversion of lactones
strategy allowed the synthesis of the functionalized EFGH ring to cyclic enol ethers, we convert8do 11 via 10[(i) KHMDS —
system2 (Scheme 1) with complete stereochemical control of (PhOPOCI, 90%; (ii) vinyltrin-butyltin—Pd(PPB), cat., 96%].
all its stereogenic centers as well as the observation of its Systemllwas transformed to phosphonium s2with the
unusual conformational properti€=™by NMR spectroscopy.  proper stereochemistryia the endoperoxid&2 as summarized
The new strategy for the construction of the central didehy- in Scheme 2. Reaction of singlet oxygen wifll gave
dronooxanacane ring (E) is outlined in Scheme 1. Thus, it was endoperoxidel2 as a mixture of diastereoisomers§ ca 1:1
anticipated that a tetrasubstituted didehydrooxanonacgne ( ratio, 85%). Hydrogenation af2 in the presence of Lindlar
could be derived by reduction of a 6-membered endoperoxide catalyst in MeOH furnished the corresponding diols (10098,
(11, which in turn could be obtained from a conjugated diene ca 1:1), which were converted to monosilyl ethdi3and 14
system (Il ) via singlet oxygen addition. The latter system was by the action of TBSCtimidazole (imid.) (93%). The mixture
envisioned to arise from a lactone-derived phosphdte-(1V) was then oxidized with TPAPNMO? to furnish enonel5 in
via palladium coupling chemistry, according to a method 85% yield. The latter compound was then converted stereo-
recently developed in these laboratofiesAs demonstrated  selectively to the desired-hydroxy compoundl? by a two-
below, this strategy is both feasible and highly efficient. step sequence involving selective saturation of the exocyclic
Reaction of aldehydes* with the ylide derived from4 double bond ([(P§P)CuHE)1° (96%) and DIBAL reduction of
(LIHMDS; for abbreviations see legends in schemes) in toluene the carbonyl! function (87%). The conversion 7 to 20
resulted in the stereoselective formation ©{84%), whose required pivalate formation to afford8 (94%) followed by
desilylation with TBAF led to diob (82%). Exposure 06 to desilylation (TBAF, 91%), iodide formation £l PhsP, imid.),
the Dess-Martin reagent (1.3 equiv) resulted in selective and heating with PP (87% for two steps).
— - - - - Coupling of the ylide derived from phosphonium saf*
A e S0a w1y Bando. H Duyne, G. Vs Clardy, JJC. - (cheme 3p-BuLi, HMPA) with aldehyde22! gavecis-olefin
(2) (a) Pawlak, J.; Tempesta, M. S.; Golik, J.; Zagorski, M. G.; Lee, M. 23 (56%). Desilylation of23 with TBAF resulted in the
S.; Nakanishi, K.; Iwashita, T.; Gross, M. L.; Tomer, K. B.Am. Chem. formation of hydroxy dithioketa24 (82%), which gave rise to

Soc 1987, 109, 1144. (b) Zagorski, M. G.; Nakanishi, K.; Qin, G.-W.; Lee, : 12
M. S.J. Org. Chem1988 53, 4158, oxocene25 (72%) upon treatment with AQCl3-NaHCG:.

(3) For reviews, see: (a) Alvarez, E.; Candenas, M.-LrePeR.; Ravelo, Reductive removal of the ethylthio group fro2% (PhsSnH-
ﬂ/.IL(.:;hMartirFli J'1%&h8?'1%%71995 95, 1953. (b) Yasumoto, T.; Murata,  AIBN) established the desired oxocene framew26k(81%).
. Chem. Re. , . ; i
(4) Nicolaou, K. C.; Veale, C. A.; Hwang, C.-K.; Hutchinson, J.; Prasad, The benZy“d%ne group was Clea.ved fljﬁﬁlby hydrogeno_ly5|s
C. V. C.; Ogilvie, W. W.Angew. Chem., int. Ed. Engl991, 30, 299. (Pd/C, H, 94%), and the resulting dioky) was selectively
(5) (@) Overman, L. E.; Blumenkopf, T. A.; Thompson, A. 5 Am. silylated with TBSCI-imid. to afford8 (90%). Compoun@8
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(c) Nicolaou, K. C.; Prasad, C. V. C.; Ogilvie, W. W. Am. Chem. Soc  (89%), the conversion of which to dithioket&0 was achieved
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Scheme 2Construction of the E ring phosphonium sa@@
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a Reagents and conditions: (a) 1.2 equivpl.2 equiv of LIHMDS
in THF, toluene, CC; then 1.0 equiv 08, 8 h, 84%; (b) 2.4 equiv of
TBAF, THF, 25°C, 7 h, 82%; (c) 1.3 equiv of DesMartin reagent,
CH.Cl, 25°C, 87%; (d) 3.0 equiv of NaCl© 1.2 equiv of NaHPQy,
5.0 eqiuv of 2-methyl-2-butené;BuOH:H,O (5:1), 25°C 96%; (e)
1.2 equiv of trichlorobenzoyl chloride, 1.3 equiv of;Bt THF, 0°C;
then 6.0 equiv of 4-DMAP, benzene, 8G, 1 h, 70%; (f) 2.0 equiv of
KHMDS, 2.0 equiv of (PhQPOCI, HMPA, THF,—78 °C, 90%; (g)
1.5 equiv ofn-BusSNnCH=CH,, 0.05 equiv of Pd(PRy, 3.0 equiv of
LiCl, THF, 80°C, 95%; (h) 0.045 equiv ahesetetraphenylporphine,
CCly, Oy, hy, 0°C, 85%; (i) H, Lindlar catalyst, MeOH, 28C, 100%;
(j) 1.05 equiv of TBSCI, 1.2 equiv of imid., Ci€l,, 25°C, 93%; (k)
TPAP, NMO, CHCl,, 25°C, 1 h, 85%; (I) 2.0 equiv of [(P##)CuHE,
benzene, 25C, 5 h, 96%; (m) 1.05 equiv of DIBAL, C¥Cl,, —78
°C, 2 h, 87%,; (n) 3.0 equiv of PivCl, 4.0 equiv of 4-DMAP, GEl,,
25°C, 94%; (0) 1.5 equiv of TBAF, THF, 25C, 91%; (p) 2.0 equiv
of imid., 2.0 equiv of PP, 1.05 equiv ofJ, CH,Cl,, 25°C; (q) 10.0
equiv of PhP, fusion (90°C), 3 h, 87% for tw steps. LIHMDS=
lithium bis(trimethylsilyl)amide; TBAF = tetran-butylammonium
fluoride; 4-DMAP= 4-(dimethylamino)pyridine; KHMDS= potassium
bis(trimethylsilylyamide; HMPA= hexamethylphosphoramide; TBS
tert-butyldimethylsilyl.

Scheme 3Construction of GH Ring Aldehyda2?
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a2 Reagents and conditions: (a) 1.0 equi2af 1.05 equiv oh-Buli,
—78°C, then 4.0 equiv of HMPA, 1.2 equiv &2, 8 h, 56%; (b) 1.2
equiv of TBAF, THF, 25°C, 0.5 h, 82%; (c) 3.0 equiv of AgCID
10.0 equiv of NaHC@ 4 A MS, silica gel, MeNG, 25°C, 2.5 h, 72%;
(d) 4.0 equiv of PESnH, toluene, AIBN, 110C, 2 h, 81%; (e) Pd
C/H,, MeOH, 25°C, 17 h, 94%; (f) 1.1 equiv of TBSCI, 1.2 equiv of
imid., CHCl,, 25°C, 90%; (g) 0.05 equiv of TPAP, 1.5 equiv of NMO,
CH,CI,/MeCN (1:1), 25°C, 89%; (h) 15 equiv of EtSH, Ci€l,, 0.2
equiv of Zn(OTf}, 25°C, 4 h; (i) 0.05 equiv of CSA, MeOH:Ci€l,
(1:1), 1 h, 87%; (j) 3.0 equiv of S&pyr, DMSO, EgN, CH,Cl, 0 °C,
2 h, 89%. AIBN = 2,2-azobisisobutyronitrile; CSA= 10-camphor-
sulfonic acid; DMSO= dimethyl sulfoxide; MS= molecular sieves.

. SO5Pyr

CSA in MeOH-CHCI; (87%), followed by S@pyr (pyr =
pyridine) oxidation, yielded aldehy®2 (89%) via alcohoB1.
With fragments20 and 32 at hand, the construction of the
targeted syster® proceeded smoothly and expediently, as shown
in Scheme 4. Thus, Wittig couplingBuLi, HMPA) of 20
and32 furnished, stereoselectively and in high yield (77%t;
olefin 33 from which the pivalate group was removed by DIBAL
reduction, furnishing hydroxy dithioketdl4 (84%). Finally,
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Figure 2. Crystal structure of E ring system.

Scheme 4.Synthesis of EFGH Ring Systeg}
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aReagents and conditions: (a) 1.0 equi26f 1.05 equiv oh-BulLi,
THF, —78 °C; then 4.0 equiv of HMPA, 1.2 equiv 2, —78°C, 1
h; then 25°C, 8 h, 77%; (b) 1.05 equiv of DIBAL, C¥Cl,, —78 °C,
84%; (c) 2.5 equiv of AgCIQ 10.0 equiv of NaHC@ 4 A MS, silica
gel, MeNQ, 25°C, 1 h, 81%; (d) 15 equiv of RBnH, 0.1 equiv of
AIBN, toluene, A, 80%. TPAP= tetran-propylammonium perruth-
enate; NMO= 4-methylmorpholineN-oxide; DIBAL = diisobutyl-
aluminum hydride.
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Figure 3. NOE correlationsH ROSEY) of selected protons &

ring closure of 34 under the standard AgClSNaHCG;
conditiong? led to 35 (81% yield), from which the ethylthio
group was removed by reaction with #&8mH-AIBN to afford
the desired EFGH ring systeghin 80% vyield.

The framework of2 was established byH-COSY, H
ROESY, IH-13C HMQC, and HMBC NMR, as well as by
X-ray crystallographic techniques (Supporting Information).
Thus, the stereochemistry around ring E was confirmed by X-ray
analysis of intermediate (mp 144-145°C, EtOAc—hexane)
obtained froml7 by desilylation followed by acetonide forma-
tion (Figure 2). The relationship between the @racetylp-
glucal-derived stereocenters C9,C13 and C8,C17 was deduced
from IH ROESY experiments. Indeed, thd ROESY experi-
ment (Figure 3) revealed a strong NOE between H-&.08)
and H-9 ¢ 3.09) indicating asynrelationship between these
protons. The absence of NOE between H}&(08) and H-17
(6 3.33) and between H-9%(3.09) and H-134 2.99) supported
trans relationships at these fusions. Further study using
E.COSY techniques demonstrated that the coupling consfant (
between H-8 and H-17 is 10.0 Hz, supportingans arrange-
ment between these two protons. Additional NOE correlations
were in support of structur2 (see Figure 3).

The described chemistry provides the basis for the final
approach toward brevetoxin AL
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